Artificial Intelligence | An Introduction - GeeksforGeeks (2023)

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and act like humans. It involves the development of algorithms and computer programs that can perform tasks that typically require human intelligence such as visual perception, speech recognition, decision-making, and language translation. AI has the potential to revolutionize many industries and has a wide range of applications, from virtual personal assistants to self-driving cars.

Before leading to the meaning of artificial intelligence let understand what is the meaning of Intelligence-

Intelligence: The ability to learn and solve problems. This definition is taken from webster’s Dictionary.

The most common answer that one expects is “to make computers intelligent so that they can act intelligently!”, but the question is how much intelligent? How can one judge intelligence?

…as intelligent as humans. If the computers can, somehow, solve real-world problems, by improving on their own from past experiences, they would be called “intelligent”.
Thus, the AI systems are more generic(rather than specific), can “think” and are more flexible.

Intelligence, as we know, is the ability to acquire and apply knowledge. Knowledge is the information acquired through experience. Experience is the knowledge gained through exposure(training). Summing the terms up, we get artificial intelligence as the “copy of something natural(i.e., human beings) ‘WHO’ is capable of acquiring and applying the information it has gained through exposure.”

Artificial Intelligence | An Introduction - GeeksforGeeks (1)

(Video) What Is Artificial Intelligence? | Artificial Intelligence (AI) In 10 Minutes | Edureka

Artificial Intelligence

Intelligence is composed of:

  • Reasoning
  • Learning
  • Problem-Solving
  • Perception
  • Linguistic Intelligence

Many tools are used in AI, including versions of search and mathematical optimization, logic, and methods based on probability and economics. The AI field draws upon computer science, mathematics, psychology, linguistics, philosophy, neuroscience, artificial psychology, and many others.

The main focus of artificial intelligence is towards understanding human behavior and performance. This can be done by creating computers with human-like intelligence and capabilities. This includes natural language processing, facial analysis and robotics. The main applications of AI are in military, healthcare, and computing; however, it’s expected that these applications will start soon and become part of our everyday lives.

Many theorists believe that computers will one day surpass human intelligence; they’ll be able to learn faster, process information more effectively and make decisions faster than humans. However, it’s still a work in progress as there are many limitations to how much artificial intelligence is achieved. For example, computers don’t perform well in dangerous or cold environments; they also struggle with physical tasks such as driving cars or operating heavy machinery. Even so, there are many exciting things ahead for artificial intelligence!

Uses of Artificial Intelligence:

Artificial Intelligence has many practical applications across various industries and domains, including:

  1. Healthcare: AI is used for medical diagnosis, drug discovery, and predictive analysis of diseases.
  2. Finance: AI helps in credit scoring, fraud detection, and financial forecasting.
  3. Retail: AI is used for product recommendations, price optimization, and supply chain management.
  4. Manufacturing: AI helps in quality control, predictive maintenance, and production optimization.
  5. Transportation: AI is used for autonomous vehicles, traffic prediction, and route optimization.
  6. Customer service: AI-powered chatbots are used for customer support, answering frequently asked questions, and handling simple requests.
  7. Security: AI is used for facial recognition, intrusion detection, and cybersecurity threat analysis.
  8. Marketing: AI is used for targeted advertising, customer segmentation, and sentiment analysis.
  9. Education: AI is used for personalized learning, adaptive testing, and intelligent tutoring systems.

This is not an exhaustive list, and AI has many more potential applications in various domains and industries.

(Video) Introductory webinar for AI/ML career opportunities | Seminar GeeksforGeeks

Need for Artificial Intelligence

  1. To create expert systems that exhibit intelligent behavior with the capability to learn, demonstrate, explain, and advise its users.
  2. Helping machines find solutions to complex problems like humans do and applying them as algorithms in a computer-friendly manner.

Approaches of AI

There are a total of four approaches of AI and that are as follows:

  • Acting humanly (The Turing Test approach): This approach was designed by Alan Turing. The ideology behind this approach is that a computer passes the test if a human interrogator, after asking some written questions, cannot identify whether the written responses come from a human or from a computer.
  • Thinking humanly (The cognitive modeling approach): The idea behind this approach is to determine whether the computer thinks like a human.
  • Thinking rationally (The “laws of thought” approach): The idea behind this approach is to determine whether the computer thinks rationally i.e. with logical reasoning.
  • Acting rationally (The rational agent approach): The idea behind this approach is to determine whether the computer acts rationally i.e. with logical reasoning.

Applications of AI include Natural Language Processing, Gaming, Speech Recognition, Vision Systems, Healthcare, Automotive, etc.

Forms of AI:

1) Weak AI:

  • Weak AI is an AI that is created to solve a particular problem or perform a specific task.
  • It is not a general AI and is only used for specific purpose.
  • For example, the AI that was used to beat the chess grandmaster is a weak AI as that serves only 1 purpose but it can do it efficiently.

2) Strong AI:

  • Strong AI is difficult to create than weak AI.
  • It is a general purpose intelligence that can demonstrate human abilities.
  • Human abilities such as learning from experience, reasoning, etc. can be demonstrated by this AI.

3) Super Intelligence

(Video) Introduction to AI| Sadaf Khan| Lecture 1

  • As stated by a leading AI thinker Nick Bostrom, “Super Intelligence is an AI that is much smarter than the best human brains in practically every field”.
  • It ranges from a machine being just smarter than a human to a machine being trillion times smarter than a human.
  • Super Intelligence is the ultimate power of AI.

    An AI system is composed of an agent and its environment. An agent(e.g., human or robot) is anything that can perceive its environment through sensors and acts upon that environment through effectors. Intelligent agents must be able to set goals and achieve them. In classical planning problems, the agent can assume that it is the only system acting in the world, allowing the agent to be certain of the consequences of its actions. However, if the agent is not the only actor, then it requires that the agent can reason under uncertainty. This calls for an agent that cannot only assess its environment and make predictions but also evaluate its predictions and adapt based on its assessment. Natural language processing gives machines the ability to read and understand human language. Some straightforward applications of natural language processing include information retrieval, text mining, question answering, and machine translation. Machine perception is the ability to use input from sensors (such as cameras, microphones, sensors, etc.) to deduce aspects of the world. e.g., Computer Vision. Concepts such as game theory, and decision theory, necessitate that an agent can detect and model human emotions.

    Many times, students get confused between Machine Learning and Artificial Intelligence, but Machine learning, a fundamental concept of AI research since the field’s inception, is the study of computer algorithms that improve automatically through experience. The mathematical analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as a computational learning theory.

    Stuart Shapiro divides AI research into three approaches, which he calls computational psychology, computational philosophy, and computer science. Computational psychology is used to make computer programs that mimic human behavior. Computational philosophy is used to develop an adaptive, free-flowing computer mind. Implementing computer science serves the goal of creating computers that can perform tasks that only people could previously accomplish.

    AI has developed a large number of tools to solve the most difficult problems in computer science, like:

  • Search and optimization
  • Logic
  • Probabilistic methods for uncertain reasoning
  • Classifiers and statistical learning methods
  • Neural networks
  • Control theory
  • Languages

High-profile examples of AI include autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art (such as poetry), proving mathematical theorems, playing games (such as Chess or Go), search engines (such as Google search), virtual assistants (such as Siri), image recognition in photographs, spam filtering, prediction of judicial decisions[204] and targeted online advertisements. Other applications include Healthcare,Automotive, Finance,Video games, etc

Are there limits to how intelligent machines – or human-machine hybrids – can be? A superintelligence, hyperintelligence, or superhuman intelligence is a hypothetical agent that would possess intelligence far surpassing that of the brightest and most gifted human mind. ‘‘Superintelligence’’ may also refer to the form or degree of intelligence possessed by such an agent.

This article is contributed by Palak Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.

(Video) Episode 1 | Artificial Intelligence and Data Science: An introduction

Drawbacks of Artificial Intelligence :

  1. Bias and unfairness: AI systems can perpetuate and amplify existing biases in data and decision-making.
  2. Lack of transparency and accountability: Complex AI systems can be difficult to understand and interpret, making it challenging to determine how decisions are being made.
  3. Job displacement: AI has the potential to automate many jobs, leading to job loss and a need for reskilling.
  4. Security and privacy risks: AI systems can be vulnerable to hacking and other security threats, and may also pose privacy risks by collecting and using personal data.
  5. Ethical concerns: AI raises important ethical questions about the use of technology for decision-making, including issues related to autonomy, accountability, and human dignity.

Technologies Based on Artificial Intelligence:

  1. Machine Learning: A subfield of AI that uses algorithms to enable systems to learn from data and make predictions or decisions without being explicitly programmed.
  2. Natural Language Processing (NLP): A branch of AI that focuses on enabling computers to understand, interpret, and generate human language.
  3. Computer Vision: A field of AI that deals with the processing and analysis of visual information using computer algorithms.
  4. Robotics: AI-powered robots and automation systems that can perform tasks in manufacturing, healthcare, retail, and other industries.
  5. Neural Networks: A type of machine learning algorithm modeled after the structure and function of the human brain.
  6. Expert Systems: AI systems that mimic the decision-making ability of a human expert in a specific field.
  7. Chatbots: AI-powered virtual assistants that can interact with users through text-based or voice-based interfaces.

Artificial Intelligence | An Introduction - GeeksforGeeks (2)

Applications

Issues of Artificial Intelligence :

Artificial Intelligence has the potential to bring many benefits to society, but it also raises some important issues that need to be addressed, including:

  1. Bias and Discrimination: AI systems can perpetuate and amplify human biases, leading to discriminatory outcomes.
  2. Job Displacement: AI may automate jobs, leading to job loss and unemployment.
  3. Lack of Transparency: AI systems can be difficult to understand and interpret, making it challenging to identify and address bias and errors.
  4. Privacy Concerns: AI can collect and process vast amounts of personal data, leading to privacy concerns and the potential for abuse.
  5. Security Risks: AI systems can be vulnerable to cyber attacks, making it important to ensure the security of AI systems.
  6. Ethical Considerations: AI raises important ethical questions, such as the acceptable use of autonomous weapons, the right to autonomous decision making, and the responsibility of AI systems for their actions.
  7. Regulation: There is a need for clear and effective regulation to ensure the responsible development and deployment of AI.

It’s crucial to address these issues as AI continues to play an increasingly important role in our lives and society.

Reference :

Here are some resources for further reading and learning about Artificial Intelligence:

(Video) Overview of Machine Learning | GeeksforGeeks

  1. Books:
    “Artificial Intelligence: A Modern Approach” by Stuart Russell and Peter Norvig
    “Deep Learning” by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
    “Artificial Intelligence with Python” by Prateek Joshi
  2. Websites:
    OpenAI (openai.com)
    AI Conference (aiconf.org)
    AI-Forum (ai-forum.org)
    Stanford Artificial Intelligence Laboratory (ai.stanford.edu)
  3. Online Courses:
    Coursera’s Introduction to Artificial Intelligence (coursera.org/learn/introduction-to-ai)
    Udacity’s Artificial Intelligence Nanodegree (udacity.com/course/artificial-intelligence-nanodegree–nd898)
    edX’s Artificial Intelligence Fundamentals (edx.org/learn/artificial-intelligence)

These resources can provide a good starting point for learning more about AI and its various aspects and applications.


My Personal Notesarrow_drop_up

FAQs

Is Introduction to artificial intelligence hard? ›

Learning AI is difficult for many students, especially those who do not have a computer science or programming background. However, it may be well worth the effort required to learn it. The demand for AI professionals will likely increase as more and more companies start designing products that use AI.

What is artificial intelligence write a paragraph in 200 words? ›

Artificial Intelligence refers to a set of concepts, technologies, and methods that aim at making computers think and learn like humans. It's a new field of study focusing on making computers 'smart' – performing tasks without any human instructions and intervention. The term was coined by John McCarthy in 1955.

What is artificial intelligence * Your answer? ›

Artificial intelligence (AI) is a set of technologies that enable computers to perform a variety of advanced functions, including the ability to see, understand and translate spoken and written language, analyze data, make recommendations, and more.

Does AI require math? ›

A solid foundation in mathematical knowledge is vital for the development of artificial intelligence (AI) systems.

Why is AI so hard? ›

Artificial intelligence is difficult to define because it encompasses a wide range of phenomena and concepts, from simple mathematical algorithms that recognize patterns in data sets to complex systems capable of intelligent behavior such as reasoning, natural communication, problem-solving, and learning.

What is artificial intelligence short summary? ›

Artificial intelligence is a constellation of many different technologies working together to enable machines to sense, comprehend, act, and learn with human-like levels of intelligence.

What is the thesis statement for artificial intelligence? ›

Machine learning (ML) as a Thesis Topic

Artificial intelligence enables machines to automatically learn a task from experience and improve performance without any human intervention.

What is artificial intelligence short essay? ›

Artificial Intelligence refers to the intelligence of machines. This is in contrast to the natural intelligence of humans and animals. With Artificial Intelligence, machines perform functions such as learning, planning, reasoning and problem-solving.

Can a non IT person learn AI? ›

You don't need to learn python or any other coding language to develop simple AI projects, you can develop simple projects on Non coding platforms developed by google, Microsoft and amazon. This will give you a hands on experience of developing AI models and make you confident on AI .

Can I learn AI without coding? ›

For those of you who have been wondering whether or not it's possible to learn AI without learning to code, the answer is yes! With so many different courses and resources available online, there are plenty of ways for someone with a non-coding background to get started on their AI journey.

What is Introduction to artificial intelligence? ›

Artificial Intelligence is a method of making a computer, a computer-controlled robot, or a software think intelligently like the human mind. AI is accomplished by studying the patterns of the human brain and by analyzing the cognitive process. The outcome of these studies develops intelligent software and systems.

Is AI difficult than CS? ›

The answer is simple. If a person like the intelligence part of computers and machine building, then he should opt for AI, but if the person is more interested in the conceptual and orthodox studies about computers and its models, then he must definitely opt for CS as his carrier path.

Videos

1. Knowledge Representation and Reasoning in Artificial Intelligence | Logic, Semantic Net, Frames etc
(Gate Smashers)
2. Artificial Intelligence | Arpit Jain | Upskill with GeeksforGeeks
(Upskill with GeeksforGeeks)
3. Creating Image Dataset using Google Teachable Machine | GeeksforGeeks
(GeeksforGeeks)
4. Introduction to Greedy Algorithms | GeeksforGeeks
(GeeksforGeeks)
5. First Order Logic (FOL) | Artificial intelligence | Lec-28 | Bhanu Priya
(Education 4u)
6. What is Artificial Intelligence in hindi | Introduction to AI | playlist review | MCA/b.tech,etc
(Unbeaten Learning)
Top Articles
Latest Posts
Article information

Author: Kerri Lueilwitz

Last Updated: 17/06/2023

Views: 5562

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Kerri Lueilwitz

Birthday: 1992-10-31

Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

Phone: +6111989609516

Job: Chief Farming Manager

Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.